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Abstract. Our aim of this research is to propose a model which estimates implied
relative credit reliability from the yield spread of defaultable bonds and evaluates
their spread risk. We introduce “Yield Spread Term-Quality Surface” (YSTQS)
which is defined on the space of duration and credit reliability of the issuers, and
express their yield spread. First, we review the general pricing theorem of defaultable
bonds with unpredictable recovery in the no-arbitrage context based on the external
hazard rates. Second, we show that the dynamics of state variables determine the
shape of the YSTQS, and they drive the YSTQS if the loss-adjusted hazard rates
are described by a function of them. Finally, we show an empirical analysis of our
model with daily yield spread, duration, and the credit ratings of corporate bonds.
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1. Introduction

Credit risk is the potential loss of obligees’ fortune caused by the default
of their obligors. Among the credit risk, the fluctuation of the claim’s
price in the secondary market caused by the deterioration of the oblig-
ors’ credit reliabilities is called spread risk. The evaluation of fair spread
and spread risk are as much important as the default probability itself
to the investors of defaultable assets.

Our aim of this research is to propose a model which estimates
implied relative credit reliability from the yield spread of defaultable
bonds and evaluates their spread risk. And to associate their spread
risk, it can describe defaults of many entities at same time.

∗ The author thanks NAKAMURA Nobuhiro, associate professor of Hitotsubashi
University, and NAKAGAWA Hidetoshi, associate professor of Tokyo Institute of
Technology, for their accurate advises. And we also thank Monique Jeanblanc, pro-
fessor of Evry University, for stimulating discussions and insightful comments. The
theoretical part of this article is originally introduced in Shouda (2005).
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There exist several approaches to analyze credit risk. Some kind of
static analysis, like discriminate analysis with accounting information,
is often used in the financial decision making. But to evaluate spread
risk, dynamical analyses are suitable. Structural approach is the one
of them. It is the direct approach to model the default mechanism. In
the structural approaches, companies will default when their liability
exceed their repayment ability (Merton (1974), Black and Cox (1976)).

On the other hand, default times are modeled as external stop-
ping times with their intensities (hazard rates) in the reduced ap-
proach. Thanks to the flexibility and affinity of hazard rates with the
credit yield spreads, this approach is advantageous to evaluate credit
derivatives.

The models based on reduced approach are roughly divided into the
following two kinds. The first is formulated by a Markov chain with
stochastic variables defined on some discrete space (Jarrow, Lando and
Turnbull (1997)). They are often regarded as the credit ratings. The
key concept of them is the rating transition matrix which express the
migration probability of credit ratings. The drawback of this kind of
models to describe plural entities is explosion of rating transition matrix
caused by the naive expansions to evaluate joint default probability of
them. To avoid this difficulty, conditionally independent migration is
often assumed. Farnsworth and Li (2003) demonstrated an empirical
analysis of plural entities with an extended rating transition matrix.

The second is formulated by stochastic processes as the default
intensities. Duffie and Singleton (1999) showed that if the expected
loss is expressed as a fraction of pre-default price, the defaultable dis-
count bonds are priced by the discount rate which is composed of the
default free interest rate and the loss-adjusted hazard rate. The loss-
adjusted hazard rate is the instantaneous unconditional expected loss
rate. Kusuoka (1999) pointed out that we must care about the filtration
to apply reduced model to the defaults of plural entities. Duffie and
Lando (2001) showed an important research about the relation between
reduced and structural model that if obligees know obligors’ accounting
information partially, reduced models are derived from structural mod-
els. Duffee (1999) demonstrated an individual company-wise empirical
analysis of an intensity based model with the extended Kalman filter.

The essential problem with the evaluation of bonds is to estimate
their yield. And they are associated to the yield term structure for each
issuer.

See figure 1 which shows yield spread of corporate bonds by their
duration at September 30, 2005. The markers distinguish each credit
rating. We can see some relation between the yield spreads and the
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credit ratings, but it is difficult to draw one ‘curve’ which contains all
of yield spreads and duration points for each credit rating.
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Figure 1. Yield spread of corporate bonds by their duration at September 30, 2005.

Figure 2 shows the distribution of durations, credit ratings and yield
spreads historically. It also shows the sector classification of the issuers.
We find that the disutribusion of duration and credit ratings are stable,
but the one of yield spread is not. It is required to describe these facts
to our model.

The following two approaches are well known to formulate the dy-
namics of yield term structure of default free bonds which hold the no
arbitrage principle.

The first is the Markov state variable models. The affine types
(Duffie and Kan (1996)) and the Quadratic Gaussian types (Constantin-
des (1992), Jamshidian (1996)) are representative of them. The char-
acteristics of this kind of models are that the yield term structure is
represented by the function of finite Markov state variables, and the
partial differential equations which the function must hold are derived.
But in those models, the shape of yield term structure is restricted and
it is difficult to capture the actual market.

The second is the forward rate models introduced by Heath, Jar-
row and Morton (1992). They modeled the dynamics of forward rates
directly, and show that the drifts in the risk neutral measure are de-
termined by the no arbitrage principle. In this kind of models, the
current term structure is taken as the initial value of the model. But
the implementation is rather difficult other than the Gaussian type
models.

In this research, we construct an intensity based model with Markov
state variables. The loss-adjusted hazard rates on the risk neutral mea-
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Figure 2. Summary of the Data

sure in our model correspond to the instantaneous interest rate in the
interest rate term structure models. There is no discrimination between
the state variables in the interest rate models. But in our model, we
should discriminate the state variables by intrinsic to each individ-
ual entity or common to whole entities. We assume that there exists
some real valued stochastic process named Credit Quality Indicator
(CQI) for every issuer which represents its credit reliabilities, and some
real valued stochastic processes named Macro Credit Indicators
(MCIs) which are common to whole entities, and the loss-adjusted
hazard rates are the function of CQI and MCIs.

In our model, the yield term structure is defined for every CQI
values. So it is extended to the Yield Spread Term-Quality Surface
(YSTQS) which is defined on the space of term and credit reliability of
the issuer, and express their yield spread from the default free yield.

Under the some technical assumptions and no arbitrage principle, we
show that the yield spreads of discount corporate bonds are represented
by some function of issuer’s CQI, MCIs, and its duration. And we derive
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the partial differential equation which the function should hold. Solving
this PDE, we get the YSTQS for each value of MCIs. Therefore MCIs
have roles to fluctuate the YSTQS dynamically. This means that the
yield spread term structure for some specified CQI will change depend
to the current value of MCIs.

More over, we introduce the dynamic mapping function which tran-
srate credit ratings to CQIs. We show its estimated result in advance
(figure 3). Remember that the distribution of credit ratings is sta-
ble, regardless of the change of yield spreads. This function expresses
the averaged change of credit reliability which is not captured by the
migration of credit ratings.
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Figure 3. Mapping function which translates Credit Ratings to CQIs at each time
point.

There exist researches which proposed similar model of ours. Douady
and Jeanblanc (2002) derived no-arbitrage condition of the dynam-
ics of ‘YSTQS’. Their ‘rating’ and ‘spread field’ correspond to ‘CQI’
and ‘YSTQS’ in our model respectively. In their model, entities will
default at some specified point of ‘rating’. They modeled the dynam-
ics of ‘spread field’ like Heath, Jarrow and Morton. But they do not
investigate their model empirically. Bielecki, Crépey, Jeanblanc and
Rutkowski (2005) discussed a general class of markov chain model mod-
ulated by Levy-like process. Their main aim is to price the derivatives
of multi-default, which are basket default swaps, CDOs, and so on.
The model of Feldhütter and Lando (2005) is constructed by (discrete)
credit rating of individual obligor and 6 of common factors which drive
risk free interest rate, credit spread and specific spread for swap rates
and treasuries. They derived yield term structure for each credit class
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as function of state variables, and estimated the parameters of their
model empirically.

The major difference of our model from those researches is that we
characterized individual obligor by diffusion processes, Credit Qual-
ity Indicators which are not directly related to the credit rating or
default, but they drive default hazard rates. Because our aim is to
express the yield spread of defaultable bonds systematically and we do
not sure that they are determined by credit ratings.

We demonstrate an empirical analysis of our model based on daily
data of yield spreads, credit ratings, and durations of corporate bonds in
the market. We estimate the model parameters and paths of the MCIs
and CQIs in a context of filtering by pseudo-likelihood, with observation
models, which relate the MCIs and CQIs to the yield spread, and the
CQIs to the credit ratings.

The rest of this article is organized as follows. We formulate our
model in section 2, define the interest rate, hazard rates, MCIs, CQIs,
and others, and show the representation of risk free and corporate bond
prices by them. Furthermore, we show an example of our model. In
section 3, we estimate the model parameters and paths of the MCIs
and CQIs by empirical analysis. Section 4 concludes this article.

2. The Model

2.1. Review of the pricing theorem of defaultable bonds

Let us review the pricing theorem of defaultable bonds based on exter-
nal hazard rates briefly.

We consider a frictionless market, where default free discount bonds,
discount corporate bonds issued by N entities, and default free saving
account are traded. We assume that their prices are described on a
complete probability space, (Ω,F , P ).

Fix the time horizon T̄ . Denote the default time of entities by a set
of random times τi : Ω → [0, T̄ ] ∪ {∞}, i = 1, . . . , N , and the default
indicator of them by N i

t := 1τi≤t, which describe the state of their
default at time t.

Denote the risk free instantaneous interest rate by r· : Ω × [0, T̄ ] →
R++, and the price process of saving account as St := exp(

∫ t
0 dsrs).

Moreover, denote the price process of unit principal default free dis-
count bond1 with maturity T ∈ [0, T̄ ] by p·,T : Ω × [0, T ] → [0, 1], and

1 In most case, corporate bonds are coupon bonds. And it is reasonable to assume
that the treatment of principals and coupons are different at the recovery. So the
properness to evaluate coupon bonds as the sum of discount bonds is doubtful in
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the price process of unit principal corporate discount bond with matu-
rity T ∈ [0, T̄ ] issued by corporate i = 1, . . . , N by pi

·,T : Ω × [0, T ] →
[0, 1]. We assume that EP [ST̄ ] < ∞, and both of pt,T and pi

t∧τi−,T are

right continuous and left limit processes2.
Investors of unit principal default free discount bond will receive 1 at

its maturity. Besides the investor of unit principal discount corporate
bond will receive 1 at its maturity T in the non-default case (τi > T ),
and receive (1 − Li)p

i
τi−,T at its default time τi in the default case

(τi ≤ T ), where Li : Ω → (0, 1] represents the fractional loss rate of
market value. Note that we do not assume that τi and Li are mutually
independent. Define the recovery process Ri

·,T : Ω × [0, T ] → [0, 1) as,

Ri
t,T := N i

t (1 − Li)p
i
(t∧τi)−,T .

In summary, at t ∈ [0, T ], the defaultable bonds’ prices are;

pi
t,T > 0 if t < τi, pi

t,T = 0 if τi < t,

pi
T,T = 1 if τi > T, pi

τi,T
= Ri

τi,T
if τi ≤ T.

Define a filtration {FM
t }t∈[0,T̄ ] which represents the information of

all agents in the market up to time t as follows.3

FM
t :=

∨

T∈[0,T̄ ]

(

σ{ps,T ; s ≤ t ∧ T} ∨
∨

i=1,...,N

σ{pi
s,T ; s ≤ t ∧ T}

)

∨σ{rs; s ≤ t} ∨
N
∨

i=1

(

Di
t ∨Ri

t

)

,

Di
t := σ{N i

s; s ≤ t}, Ri
t :=

∨

T∈[0,T̄ ]

σ{Ri
s,T ; s ≤ t ∧ T}.

We call it the Market Filtration and assume that FM
T̄

⊆ F . Note that

the definition of Ri
t means that after the default of the ith entity, the

recovery value of the corporate bonds issued by it which have not mat-
urated at τi is revealed immediately. Conversely, if the issuer has not
defaulted until the bond maturity, its recovery value is never revealed
to the market.

Require that the market is no-arbitrage, i.e. there exists at least
one martingale measure Q equivalent to P under which pt,TS

−1
t and

practice. But in this paper, we only consider the evaluation of discount bond to
avoid the argument to be too complicated.

2 For any stochastic process X(t, ω), denote ∆X := X(t, ω) − X(t−, ω) and let
X(0−, ω) = 0,∀ω ∈ Ω.

3 We assume that the all filtrations are complete and right continuous.
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pi
t,TS

−1
t become (Q,FM

t )-martingales at t ∈ [0, T ] and t ∈ [0, T ∧ τi]
respectively4.

Hence N i
t is a submartingale, by Doob-Meyer’s theorem5, there ex-

ists a (FM
t )-predictable right continuous nonnegative monotonically

nondecreasing process Λ̃i
t, where Λ̃i

0 = 0 for every i = 1, . . . , N , and
N i

t − Λ̃i
t is a (Q, (FM

t ))-martingale. Λ̃i
t is called (Q, (FM

t ))-cumulative
hazard process of the ith entity.6

ASSUMPTION 1. Λ̃i
t is absolutely continuous and by some (FM

t )-
progressively measurable process h̃i

t > 0, described as,

Λ̃i
t =

∫ t

0
(1 −N i

s−)h̃i
sds.

And it is bounded as EQ[eΛ̃
i
T |τi ≥ T ] <∞.

h̃i
t is called (Q, (FM

t ))-hazard rate process of the ith entity. This as-
sumption implies that τi is a totally inaccessible stopping time.

PROPOSITION 2. If the assumption 1 hold, for any i = 1, . . . , N , T ∈
[0, T̄ ], there exists a (FM

t )-progressively measurable process γi
t ∈ [0, h̃i

t]
with which the cumulative loss-adjusted hazard process Ai

t is defined as,

Ai
t =

∫ t

0
ds(1 −N i

s)γ
i
s. (1)

and N i
tLi −Ai

t becomes a (Q, (FM
t ))-martingale.

We call γi
· the (Q, (FM

t ))-loss-adjusted hazard rate process of the ith

entity.

THEOREM 3. For any (Q, (FM
t ))-semimartingale Xi

·,T : Ω× [0, T ] →
R, the following two conditions are equivalent;
(i) The defaultable bond prices are represented by such Xi

·,T as,

pi
t,T = (1 −N i

t )X
i
t,T e

∫ t

0
rs+γi

sds + (1 −N i
t−)Ri

t,T . (2)

4 We do not assume that the completeness of the market, so the uniqueness of
the risk neutral measure is not guaranteed. On the rest of this article, we only state
that if our assumptions hold in some risk neutral measure, we can get the results.

5 See Protter (2003) III-3.
6 See Blanchet-Scallied and Jeanblanc (2004) or Bielecki and Rutkowski (2001)

Chapter 5∼8 for detail of mathematical formulation about the intensity based
models.
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(ii) M̂ i
·,T : Ω × [0, T ] → R which is defined by such Xi

·,T as,

M̂ i
t,T := (1 −N i

t )X
i
t,T +N i

tX
i
τi−,T , (3)

is a (Q, (FM
t ))-martingale, and it satisfies the terminal condition,

(1 −N i
T )Xi

T,T = (1 −N i
T )e−

∫ T

0
rs+γi

sds. (4)

This theorem states that the only (Q, (FM
t ))-loss adjusted hazard rate

processes are important to price defaultable bonds7.

2.2. The Micro-Macro Indicators

We introduce state vectors xt : Ω × [0, T̄ ] → X ⊆ RM and zt : Ω ×
[0, T̄ ] → ZN ⊆ RN .

We put the following assumptions on the risk free interest rate and
the loss-adjusted hazard rates.

ASSUMPTION 4. The (Q, (FM
t ))-loss-adjusted hazard rate process at

time t ∈ [0, T̄ ] of the ith entity, γi
t, is represented by a function of xt

and zi
t, where, zi

t denotes the ith component of zt.
8

γi
t = γ(xt, z

i
t), γ ∈ C2,2(X × Z → R++).

ASSUMPTION 5. The risk free instantaneous interest rate at time
t ∈ [0, T̄ ] is represented by a function of xt and a (FM

t )-mesurable
stochastic process g· : Ω × [0, T̄ ] → R+, which is independent of state
variables.

rt = r(xt) + gt, r ∈ C2(X → R+).

We call each component of xt Macro Credit Indicator (MCI), hence
they affect default free interest rate and default intensities of all en-
tities. Conversely, we call zi

t Credit Quality Indicator (CQI) of the ith

entity, hence it only affects the hazard rate of the ith entity. The macro

7 This result is similar to the Theorem 1 in Duffie and Singleton (1999), but it
holds in more general case.

Kusuoka (1999) states that it needs some technical assumptions to derive the

standard model of credit risk.
Without such additional assumptions, we can not represent defaultable bond

prices by expectation form anymore. But we can still derive partial differential
equations or execute Monte Carlo simulation about bond prices based on our
theorem.

8 When t ≥ τi, γi
t has no meaning in finance.
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credit indicator represents the economic state. And the credit quality
indicator represents the credit reliability of individual entity under the
condition of the macro credit indicator.

Define the following filtrations at t ∈ [0, T̄ ].

Gt := σ{xs, zs; s ≤ t},

Ft := Gt ∨
N
∨

i=1

Di
t ∨Ri

t ∨ σ{gs; s ≤ t}.

τi are (Ft)-stopping time. Let all the component of xt and zt be (Gt)-
semimartingales.

ASSUMPTION 6. We assume Gt ⊆ FM
t ,∀t ∈ [0, T̄ ], i.e., xt and zt are

(FM
t )-measurable.

Therefore trivially, Ft ⊆ FM
t ,∀t ∈ [0, T̄ ].

We restrict our discussion within the case of that the state vectors
are some Markov diffusion processes. Let M and N dimensional mutu-
ally independent P -standard Brownian motions wx

t , wz
t , t ∈ [0, T̄ ] be

described on (Ω,F , P ) respectively, and define,

dBi
t :=

√

1 − ρ2
xz vidw

z
t + ρxzdw

x
t ,

where ρxz is a constant M -dimensional (row) vector with ρ2
xz ∈ [0, 1)

and vi, i = 1, . . . , N are mutually linear independent N -dimensional
(row) vectors with |vi| = 1.

Let the state vectors xt and zt be the solutions of following simul-
taneous stochastic differential equations respectively.

dxt = µx(xt)dt+ σx(xt)dw
x
t ,

dzi
t = µz(xt, z

i
t)dt+ σz(xt, z

i
t)dB

i
t . (5)

The each coefficient function must satisfy the conditions that the equa-
tions have strong solutions.

Hence the martingale representation theorem, Radon-Nikodým den-
sity process, ηt, between P and Q under Gt is given by some predictable
(Gt)-progressively measurable process, (βx, βz) : Ω× [0, T̄ ] → RM+N as
follows.

ηt :=
dQ

dP

∣

∣

∣

∣

Gt

= 1 +

∫ t

0+
ηs−

(

βx
s dw

x
s + βz

sdw
z
s

)

.

Define
βi

t :=
√

1 − ρ2
xz viβ

z
t + ρxzβ

x
t .
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ASSUMPTION 7. βx
t , βi

t, ∀t ∈ [0, T̄ ], ∀i = 1, . . . , N are represented
by,

βx
t = βx(xt), βi

t = βi(xt, z
i
t).

Define w̃x
t and B̃i

t, i = 1, . . . , N as,

dw̃x
t = dwx

t + βx
t dt,

dB̃i
t = dBi

t + βi
tdt.

From the Girsanov theorem, they are Q-standard Brownian motions.
Equation (5) can be rewritten as,

dxt = µ̃x(xt)dt+ σx(xt)dw̃
x
t ,

dzi
t = µ̃z(xt, z

i
t)dt+ σz(xt, z

i
t)dB̃

i
t , (6)

where,

µ̃x(xt) := µx(xt) − σx(xt)β
x
t (xt),

µ̃z(xt, z
i
t) := µz(xt, z

i
t) − σz(xt, z

i
t)β

i(xt, z
i
t).

Let us consider the default free bond prices. We assume that there
exists the following function.

ASSUMPTION 8. Let f ∈ C2,1(X × [0, T̄ ] → R+) be a solution of the
following partial differential equation, and assume its existence9.

µ̃T
x (x)∂xf(x, τ) +

1

2
Tr
[

σx(x)σx
T (x)

(

∂x
T∂xf(x, τ)

−(∂x
T f(x, τ))(∂xf(x, τ))

)]

− ∂τf(x, τ) + r(x) = 0. (7)

And its terminal condition is given as follows.

f(x, 0) = 0, ∀x ∈ X .

Then, the following proposition should hold.

PROPOSITION 9. At any t ∈ [0, T ], the price of unit principal default
free discount bond with any maturity T ∈ [0, T̄ ] is represented by f(·, ·)
as,

pt,T = exp
(

−f (xt, T − t)
)

EQ
[

exp
(

−
∫ T

t
gsds

)∣

∣

∣FM
t

]

. (8)

9 aT denotes the transposed matrix of a. The operator ∂x and ∂x
T generate M

dimensional column and row vectors respectively. Tr[ · ] denotes trace of matrices.
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Proof. Hence Q is a martingale measure, the price of default free
discount bonds are represented as follows,

pt,T = Mt,TSt, Mt,T := EQ
[

S−1
T

∣

∣

∣FM
t

]

. (9)

We should show,

Mt,T = S−1
t exp

(

−f (xt, T − t)
)

EQ
[

exp
(

−
∫ T

t
gsds

)∣

∣

∣FM
t

]

= exp
(

−f (xt, T − t) −
∫ t

0
r(xs)ds

)

EQ
[

exp
(

−
∫ T

0
gsds

)∣

∣

∣FM
t

]

.

Obviously, it holds the terminal condition that MT,T = S−1
T . Hence, x·

and g· are mutually independent, the problem is only to show that the
part of xt is a martingale. And it is easily checked by the Ito formula.

Q.E.D.

Next, we consider the corporate bonds, which are exposed to the
default risk. We assume that there exists the following function.

ASSUMPTION 10. Let Y ∈ C2,2,1(X×Z×[0, T̄ ] → R+), be a solution
of the following partial differential equation, and assume its existence.

µ̃T
x (x)∂xY (x, z, τ) + µ̃z(x, z)∂zY (x, z, τ)

+
1

2
Tr
[

σx(x)σx
T (x)

(

∂x
T∂xY (x, z, τ) − (∂x

TY (x, z, τ))(∂xY (x, z, τ))

−2(∂x
TY (x, z, τ))(∂xf(x, τ))

)]

+
1

2
σ2

z(x, z)
(

∂2
zY (x, z, τ) − (∂zY (x, z, τ))2

)

+ρxzσz(x, z)σx
T (x)

(

∂x∂zY (x, z, τ) − (∂xf(x, τ) + ∂xY (x, z, τ))

(∂zY (x, z, τ))
)

− ∂τY (x, z, τ) + γ(x, z) = 0.

(10)

And its terminal condition is given as follows.

∀x ∈ X , z ∈ Z, Y (x, z, 0) = 0.

Then the following theorem should hold.

THEOREM 11. The market price of the unit principal discount cor-
porate bond with any maturity T ∈ [0, T̄ ] issued by arbitrary entity i is
represented as follows at any t ∈ [0, T ].

pi
t,T = (1 −N i

t )pt,T exp
(

−Y (xt, z
i
t , T − t)

)

+ (1 −N i
t−)Ri

t,T . (11)
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Proof. Put,

Xi
t,T = pt,T exp

(

−Y (xt, z
i
t , T − t)

)

e−
∫ t

0
rs+γi

sds

and check it satisfies the condition of theorem 3.
Q.E.D.

Finally, it has shown that pt,T and pi
t,T are Ft-measurable. So we

have the following remark.

REMARK 12. If the all assumptions are satisfied, the market filtration
FM

t is equivalent to the filtration Ft, i.e. FM
t = Ft, ∀t ∈ [0, T̄ ].

Now we can check weather the assumption 6 of Gt ⊆ FM
t is consistent

with other assumptions or not. To hold it, it required that there is no
redundant risk with xt or zt. One of the sufficient conditions is given
as follows.

|∂i
xr(x)| + |∂i

xγ(x, z)| 6= 0, |∂zγ(x, z)| 6= 0,
|σx(x)| 6= 0, |σz(x, z)| 6= 0, a.e.

DEFINITION 13. The Yield Spread Term-Quality Surface at time t
is defined as,

Y STQSt(z, T ) =
1

T
ln

(

pi
t,t+T

pt,t+T

)

zi
t=z,τi>t

=
Y (xt, z, T )

T
. (12)

2.3. An Example of Our Model

MCI Model
Assume that there is only one component of the MCI and the MCI
does not affect interest rate, i.e., r(·) = 0, so we can drop f(·, ·) from
equation (9). We further assume that this scalar MCI is a square root
process, i.e. the coefficient functions of equation (6) are given as follows,

dxt = κx(θx − xt)dt+ σx
√
xtdw

x
t

= κx(θ̃x − xt)dt+ σx
√
xtdw̃

x
t , (13)

where σx > 0, κx > 0, θ̃x > 0, θx > 0. The square root process is
popular in finance as an example of stable positive definite processes
like instantaneous interest rates or hazard rates.
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CQI Model
We put CQI zt as OU processes, i.e.,

dzi
t = κz(θz − zi

t)dt+
√

2κzdBi(t)

= κz(θ̃z − zi
t)dt+

√
2κzdB̃i(t), (14)

where κz > 0. The unconditional mean and variance of this process
are θz, (θ̃z on measure Q) and 1 at any t respectively. We consider this
stability is suitable for the CQI.

And put the loss-adjusted hazard rate function as follows,

γ(x, z) :=
γ̄x

2x0

(

tanh(φ(z)) + 1
)

,

where φ(·) is a cubic spline function. We fix γ(x0, z0) = γ0 to normalize
xt. γ(·, ·) satisfies the upper and lower restrictions γ(x, z) ∈ (0, γ̄x/x0)
in z ∈ R in spite of its high flexibility. So we can avoid the explosion
of the the hazard rate.

To solve the PDE (9) by finite differential method, we put the
terminal condition of Y (·, ·, ·) as follows,

Y (x, z, 0) = 0,
∂2

zY (x, z, τ) = 0, for |z| → ∞,
∂2

xY (x, z, τ) = 0, for x→ ∞.

3. Data Analysis

We evaluate the model parameters and paths of MCI and CQIs for
all entities from daily yield spreads, durations, and credit ratings of
corporate bonds. The YSTQS of each time point will be revealed as
the result. We use the coupon bond data, but to reduce the calculation
cost, we evaluate them as discount bonds those have same yield and
duration with the original coupon bonds.

Though the model is nonlinear, we apply linear approximations at
each time step. The observation noise and the conditional distribu-
tion of state variables are approximated by multidimensional normal
distribution, and apply the maximum pseudo-likelihood estimation.

3.1. The Observation Model

Denote the set of yield spreads, durations, and credit ratings of cor-
porate bonds by {(Ỹ i,n

t , τ i,n
t , ξ̃i

t) : t ∈ T , n ∈ N i
t , i ∈ It}, where the

super script i denotes their issuer, n identifies the issue, and the sub
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script t denotes the calender time respectively. It represents the set of
entities of which data exists at the time point t ∈ T = {1, . . . , T}, and
N i

t represents the set of bonds issued by i of which data exists at the
time point t. ξ̃i

t ∈ Ξ are the observed credit ratings from AAA to BBB-,
where Ξ := {ζAAA, . . . , ζBBB-} ⊆ R.

Denote Ỹ ·
t := {Ỹ i,n

t |n ∈ N i
t , i ∈ It}, ξ̃·t := {ξ̃i

t|i ∈ It}, Ỹ ·
{t} :=

{Ỹ ·
s : s ≤ t}, ξ̃·{t} := {ξ̃·s : s ≤ t}. Ỹ ·

t and ξ̃·t are the set of informa-

tion about the yield spreads and credit ratings observed at time point
t respectively, and Ỹ ·

{t} and ξ̃·{t} are those of observed up to time t

respectively.
We use the following observation models.

Observation model of the yield spreads:

Ỹ i,n
t = Y (xt, z

i
t + εi,nz,t , τ

i,n
t ) + τ i,n

t (δl + εi,ny,t),

εi,nz,t ∼ N(0, λ2
z), εi,ny,t ∼ N(0, λ2

y). (15)

Observation model of the credit ratings:

P (ξ̃i
t|zi

t) =
1

Az(zi
t , t)

exp

(

−(zi
t − ψ(ξ̃i

t , t))
2

2λξ(ξ̃
i
t, t)

2

)

, (16)

Az(z, t) :=
∑

ξ∈Ξ

exp

(

−(z − ψ(ξ, t))2

2λξ(ξ, t)2

)

.

See the observation model of the yield spreads. We considered that there
exist two kinds of noise source in the observation of yield spreads.
The first is misestimation of CQI, which is represented by εi,nz,t . The

second is simple noise on the yield spreads, which is represented by εi,ny,t .
Meanwhile, δl > 0 is the liquidity adjustment parameter. We assume
that the noises are mutually independent in i, n and t10.

On the other hand, the observation model of the credit ratings gives
obserbation probability of credit ratings. We transform the credit rat-
ings to CQIs with the time depending mapping function ψ : Ξ×T → Z.
We denote z̃i

t := ψ(ξ̃i
t , t). The magnitude of CQIs observation error

estimated from the credit ratings are denoted by λξ : Ξ × T → R+.
Az : Z × T → R++ is the normalize coefficient.

10 There is another choice that ε
i,n
z,t does not depend to n. But it makes the

correlation matrix non diagonal.
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Let us derive the recurrence formula of likelihood from above obser-
vation models. At first, decompose the likelihood function to the initial
probability function and the conditional probability functions at each
time point as follows.

P (Ỹ ·
{T}, ξ̃

·
{T}) = P (Ỹ ·

T , ξ̃
·
T |Ỹ ·

{T−1}, ξ̃
·
{T−1})P (Ỹ ·

{T−1}, ξ̃
·
{T−1})

=

(

T
∏

t=1

P (Ỹ ·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1})

)

P (Ỹ ·
{0}, ξ̃

·
{0}). (17)

The probability function of the observations at each time point and
the filtered probability function of the state variables are represented
as follows respectively.

P (Ỹ ·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1})

=

∫

P (xt ∈ dx, zt ∈ dz, Ỹ ·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1}), (18)

P (xt, zt|Ỹ ·
{t}, ξ̃

·
{t})

=
P (xt, zt, Ỹ

·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1})

∫

P (xt ∈ dx, zt ∈ dz, Ỹ ·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1}),

(19)

where,
P (xt, zt, Ỹ

·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1}),

gives the conditional joint probability function of the state variables
and the observations at each time point.

(filtering) The conditional joint probability function of the state vari-
ables and the observations at each time point are decomposed to the
predicted probability function of the state variables and the probability
function of the observations as follows.

P (xt, zt, Ỹ
·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1})

=
(

∏

i∈It

∏

n∈N i
t

P (Ỹ i,n
t |xt, z

i
t)
)(

∏

i∈It

P (ξ̃i
t |zi

t)
)

P (xt, zt|Ỹ ·
{t−1}, ξ̃

·
{t−1}). (20)

(prediction) The predicted probability function of the state variables
are given by the filtered probability functions of the state variables
at the previous time point and the transition probability of the state
variables, which are determined by dynamics of the state variables as
follows.

P (xt, zt|Ỹ ·
{t−1}, ξ̃

·
{t−1})
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=

∫

P (xt|xt−1)P (zt|xt−1, zt−1)P (xt−1 ∈ dx, zt−1 ∈ dz|Ỹ ·
{t−1}, ξ̃

·
{t−1}).

(21)

We approximate the conditional joint probability function of MCI xt

and CQIs zt by multidimensional normal distributions, and denote their
means and covariance as follows.

x̄t|s := EP [xt|Ỹ ·
{s}, ξ̃

·
{s}], Vt|s := EP [xtxt − x̄t|sx̄t|s|Ỹ ·

{s}, ξ̃
·
{s}],

z̄i
t|s := EP [zi

t |Ỹ ·
{s}, ξ̃

·
{s}], V ij

t|s := EP [zi
tz

j
t − z̄i

t|sz̄
j
t|s|Ỹ ·

{s}, ξ̃
·
{s}],

W i
t|s := EP [xtz

i
t − x̄t|sz̄

i
t|s|Ỹ ·

{s}, ξ̃
·
{s}].

We apply the following discrete approximation of state equation (5),
where, D denotes the time interval of the observations.

xt ' (µx(x̄t−1|t−1) − 1
2∂xµx(x̄t−1|t−1)x̄t−1|t−1)D

+(1 + 1
2∂xµx(x̄t−1|t−1)D)xt−1 + σx(x̄t−1|t−1)et

:= Mt−1 +Kt−1xt−1 + ςt−1et, (22)

zi
t = (µz(x̄t−1|t−1, z̄

i
t−1|t−1) − 1

2∂zµz(x̄t−1|t−1, z̄
i
t−1|t−1)z̄

i
t−1|t−1

−1
2∂xµz(x̄t−1|t−1, z̄

i
t−1|t−1)x̄t−1|t−1)D

+(1 + 1
2∂zµz(x̄t−1|t−1, z̄

i
t−1|t−1)D)zi

t−1

+1
2∂xµz(x̄t−1|t−1, z̄

i
t−1|t−1)Dx

i
t−1 + σz(x̄t−1|t−1, z̄

i
t−1|t−1)e

i
t

:= M i
t−1 + Li

t−1z
i
t−1 +Ki

t−1xt−1 + ςit−1e
i
t, (23)

where et and eit are normally distributed stochastic variables with zero
mean and following covariance, and independent of es and eis if t 6= s.

V ar[et] = D, Cov[et, e
i
t] = ρxzD,

Cov[eit, e
j
t ] =

(

(1 − ρ2
xz)viv

T
j + ρ2

xz

)

D := ΩijD.

Ωij gives the correlation of fluctuation of CQI based on Gi which
denotes the industrial sector classification of the obligor i as follows.

Ωij := 1i=j + ρs1Gi=Gj
1i6=j + ρm1Gi 6=Gj

=







1 i = j
ρs i 6= j,Gi = Gj

ρm Gi 6= Gj

where ρs, ρm ∈ [0, 1) are some constants provided that ρs ≥ ρm ≥ ρ2
xz.
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Under the above approximations, the conditional mean and covari-
ance in the prediction (20) are evaluated as follows.

x̄t|t−1 = Mt−1 +Kt−1x̄t−1|t−1,

z̄i
t|t−1 = M i

t−1 + Li
t−1z̄

i
t−1|t−1 +Ki

t−1x̄t−1|t−1,

Vt|t−1 = Kt−1Kt−1Vt−1|t−1 + (ςt−1)
2D,

V ij
t|t−1 = Li

t−1L
j
t−1V

ij
t−1|t−1 +Ki

t−1L
j
t−1W

j
t−1|t−1 +Kj

t−1L
i
t−1W

i
t−1|t−1

+ς it−1ς
j
t−1Ω

ijD,

W i
t|t−1 = Kt−1K

i
t−1Vt−1|t−1 +Kt−1L

i
t−1W

i
t−1|t−1 + ρxzςt−1ς

i
t−1D.

We approximate the yield spread observation equation (14) as fol-
lows11.

Ỹ i,n
t = Y (xt, z

i
t + εi,nz,t , τ

i,n
t ) + τ i,1

t (δl + εi,ny,t),

' Y (x̄t|t−1, z̄
i
t|t−1, τ

i,n
t ) + ∂xY (x̄t|t−1, z̄

i
t|t−1, τ

i,n
t )(xt − x̄t|t−1)

+∂zY (x̄t|t−1, z̄
i
t|t−1, τ

i,n
t )(zi

t − z̄i
t|t−1 + εi,nz,t)

+
1

2
∂zzY (x̄t|t−1, z̄

i
t|t−1, τ

i,n
t )(V ii

t|t−1 + λ2
z) + τ i,n

t (δl + εi,ny,t),

ηi,n
t := γi,n

t

(

Ỹ i,n
t − δlτ

i,n
t − Y (x̄t|t−1, z̄

i
t|t−1, τ

i,n
t )

−1

2
∂zzY (x̄t|t−1, z̄

i
t|t−1, τ

i,n
t )(V ii

t|t−1 + λ2
z)
)

' γi,n
t

(

∂xY (x̄t|t−1, z̄
i,n
t|t−1, τ

i,n
t )(xt − x̄t|t−1)

+∂zY (x̄t|t−1, z̄
i
t|t−1, τ

i,n
t )(zi

t − z̄i
t|t−1 + εi,nz,t) + τ i,n

t εi,ny,t

)

:= H i,n
t (xt − x̄t|t−1) + J i,n

t (zi
t − z̄i

t|t−1) + εi,nt .

where,

γi,n
t :=

(

(λz∂zY (x̄t|t−1, z̄
i
t|t−1, τ

i,n
t ))2 + (λyτ

i,n
t )2

)−1/2
,

and,

εi,nt := γi,n
t

(

∂zY (x̄t|t−1, z̄
i
t|t−1, τ

i,n
t )εi,nz,t + τ i,n

t εi,ny,t

)

,

has unit variance.
With the approximation of Az(z

i
t , t) ' Az(z̄

i
t|t−1, t), the conditional

mean and covariance in filtering equation (19) are evaluated as follows.

x̄t|t = x̄t|t−1 + Vt|t

∑

i∈It

∑

n∈N i
t

H i,n
t ηi,n

t

11 We only add the second derivative about z, hence the shape of Ŷ (· · ·) is strongly
curving in the direction z. It caused by the definition of γ(· · ·).
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+
∑

i∈It

W i
t|t

(

λξ(ξ̃
i
t , t)

−2(z̃i
t − z̄i

t|t−1) +
∑

n∈N i
t

J i,n
t ηi,n

t

)

,

z̄i
t|t = z̄i

t|t−1 +W i
t|t

∑

j∈It

∑

n∈N j
t

Hj,n
t ηj,n

t

+
∑

j∈It

V ij
t|t

(

λξ(ξ̃
j
t , t)

−2(z̃j
t − z̄j

t|t−1) +
∑

n∈N j
t

J j,n
t ηj,n

t

)

,

(

Vt|t W j
t|t

W i
t|t V ij

t|t

)−1

=

(

Vt|t−1 W j
t|t−1

W i
t|t−1 V ij

t|t−1

)−1

+ λξ(ξ̃
i
t , t)

−2
(

0 0j

0i 1ij

)

+





∑

k∈It

∑

n∈N k
t
Hk,n

t Hk,n
t

∑

n∈N j
t
Hj,n

t J j,n
t

∑

n∈N i
t
H i,n

t J i,n
t 1ij

∑

n∈N i
t
J i,n

t J i,n
t





where, we regard that H i,n
t = J i,n

t = 0 and z̃i
t − z̄i

t|t−1 = 0 if i /∈ It or

n /∈ N i
t . And if |z̄i

t|t| > 4, we truncate it.

Since equations (17) and (18), the log likelihood becomes,12

lnP (Ỹ ·
t , ξ̃

·
t|Ỹ ·

{t−1}, ξ̃
·
{t−1})

' Const− 1

2
ln

∣

∣

∣

∣

∣

(

Vt|t−1 W ·
t|t−1

W ·
t|t−1 V ··

t|t−1

)∣

∣

∣

∣

∣

+
1

2
ln

∣

∣

∣

∣

∣

(

Vt|t W ·
t|t

W ·
t|t V ··

t|t

)∣

∣

∣

∣

∣

+
∑

i∈It

∑

n∈N i
t

ln |γi,n
t | −

∑

i∈It

lnAz(z̄
i
t|t−1, t)

+
1

2

(

x̄t|t − x̄t|t−1

z̄·t|t − z̄·t|t−1

)T (
Vt|t W ·

t|t

W ·
t|t V ··

t|t

)−1 (
x̄t|t − x̄t|t−1

z̄·t|t − z̄·t|t−1

)

−1

2

∑

i∈It

∑

n∈N i
t

(ηi,n
t )2 −

∑

i∈It

1

2
λξ(ξ̃

i
t , t)

−2(z̃i
t − z̄i

t|t−1)
2.

(24)

3.2. The Result of Data Analysis

Table I shows our requirement for the data. The sample period is from
October 1, 2002 to March 31, 2005 for a total of 613 (time points) ×
183 (entities), 1907 (bonds) observations.

We show the path of the number of bonds in the each duration,
spread sector and industrial sector, and at figure 2. We find that the

12 Hence we assume normality of the observation error, we truncate η
·,·
t and z̃·

t− z̄·
t

by upper and lower 5 percentile respectively at each time point t in the estimation
of xt|t and log likelihood to eliminate the influence of fat tail effect.
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distributions of durations and ratings are stable, but the one of spreads
is not.

Table I. Conditions of the data

Rating better than R&I BBB-

Duration from 1 year to 11 years

Spread less than 5%

Put {ζBBB-, ζAAA} = {0, 1, . . . , 9}13, and,

z̄(ξ, t) := #{ξi
t = ξ; i ∈ It}−1

(

∑

i∈It,ξi
t=ξ

z̄i
t|t

)

,

Vz(ξ, t+ 1) :=

(

0
1ξi

t=ξ

)(

Vt|t W ·
t|t

W ·
t|t V ··

t|t

)−1 (
0

1
ξj
t =ξ

)

+
(

#{ξi
t = ξ : i ∈ It} − 1

)−1 ∑

i∈It,ξi
t=ξ

(z̄i
t|t − z̄(ξ, t))2.

But if Vz(ξ, t) ≤ 0.012, we put, Vz(ξ, t) = 0.012. We estimate the
mapping function ψ(ξ, t) as the least-squares spline approximation of
z̄i(ξ, t− 1) with the weight 1/Vz(ξ, t)

2, in the range of [−4, 4]. Figure 3
shows the estimated result of ψ(ξ, t). Meanwhile, we put,

λz(ξ, t) :=
1

2∂ξψ(ξ, t)
.

In our model the mapping function is not static. It represents typical
credit reliability of each credit rating at each date. In whole of observa-
tion period, the mapping functions are almost in the upward trend. It
is significantly at the middle range. The highest CQI is limited about
3. So the range of the mapping becomes narrow. It just corresponds to
the tightening of the credit spreads. From July to September 2003, we
find a short downward trend.

Table II shows the maximum likelihood estimation of the model
parameters. We ignore the likelihood at the first 20 business days to
eliminate the influence of the initial value. The prior distribution of

13 To justify the approximation about Az(z, t), we should implicitly consider outer
credit ratings which are never observed.
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state variables are approximated by multi dimensional normal distri-
bution which has same mean and covariance matrix with unconditional
distribution of them.

We list the summary of the estimation below.

− MCI

• The reverting mean of MCI are larger in the pricing measure
Q, compared with the one in the physical measure P . (θ̃x =
64.218, θx = 30.094).

• The time constant of mean reversion of MCI is about 1/κx =
3.4977 [year].

• The typical uncertainty of MCI is about
√

σ2
xθx/2κx = 17.025.

− CQI

• The reverting mean of CQI are larger in the physical measure
P , compared with the one in the pricing measure Q (θz = 0,
θ̃z = −1.2714).

• The time constant of mean reversion of CQI is about 1/κz =
44.490 [year].

• The typical uncertainty of CQI is 1.

− Correlation

• There exists positive correlation between the fluctuations of
CQIs each other. (ρs and ρm)

• There exists negative, but very small correlation between the
fluctuation of CQIs and MCI (ρxz).

• The industrial sector affect to the correlations between the
fluctuations of CQIs.

• The correlation parameter ρs and ρm between the fluctuations
of CQIs each other are large compared to the required value
from the correlation parameter of CQIs and MCI, |ρxz|2 =
0.00121.

− Hazard function

• See figure 4.

− Observation

• λz is significantly small compared with the typical uncertainty
of CQI and the value range of mapping function.
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• The liquidity spread is about δl = 6.8266 [bps].

Both of the reverting mean of MCI and CQI are acceptable and they
are more risky (i.e. cause the higher hazard rate) on measure Q than
on measure P .

The time constants give the typical time scales about memory of
present values. The results shows that the influence of present condition
remains about 3.5 years in the dynamics of the whole market and those
remains about 44 years in the credit quality dynamics of individual
entities. These results are realistic in practice.

Hence λz and λy are small, we find that the CQIs are tightly related
to the yield spreads.

Figure 4 shows the estimation of loss-adjusted hazard rate, γ(x, z).
It shows the well known fact that the gradients of spreads are steep at
low credit ratings.

Figure 4 shows the estimation of YSTQS at each MCI equals to 20,
40, 60, or 80. These graphs match to the γ(x, z) at the point of zero
duration hence the terminal condition of Y (x, z, τ). At the long dura-
tion region, those graphs are almost same, hence the mean reversion
property of MCI. Besides, the details of short duration region vanish
at the long duration region; it is caused by the diffusion of CQI.

Figure 6 shows the yield spread term structure of obligor who’s
CQIs is 3.0, 1.5, 0.5, or -0.5 respectively, when the MCI is 20, 40, 60,
or 80. We note the typical credit rating corresponds to each CQI as a
reference. Strong normal yields are observed in the graphs of high MCI.
The mean reversion of MCI, which has small time constant (3.5 years)
generates the gradient of term structures. Besides the mean reversion
property of CQI generates normal yields at higher CQI. But we find a
reversal that it is stronger in the graph CQI= 0.5 than CQI= 1.5. We
guess that this is caused by the shape of hazard rate which is rather
flat at CQI= 1.0.

Let us consider the path of state variables. Figure 7 shows the
estimated path of MCI. We regard that it represents gradient of yield
spread term structure; i.e., the high (resp. low) MCI corresponds to the
flat (resp. steep) term structure. We see that MCI was in the downward
trend (steepening) at first, but after August 2004, it was in upward
trend (flattening).

Hence it is difficult to show the estimations of the whole entities
in this short article, we choose typical 8 entities from their average of
CQI in the period. Figure 8 shows the comparison between the filtered
estimation of CQIs z̄i

t|t, and the credit ratings translated to the CQI

space z̃i
t. We can see that the credit ratings and CQIs are almost same



Dynamical Analysis of Corporate Bonds 23

level in rough, but they are not same in details. This means that the
credit ratings can explain rough level of yield spreads with dynamical
mapping function.

Figure 9 shows the path of yield spread of the bond which has
maximum and minimum spread issued by each entity. Two dushed
lines in each graph show the estimation by our model and the two solid
lines show the observation respectively. The results are seems to be
good except code 7201. There observed a reverse yield in early period,
and it is hard to explain. We consider it might be a miss pricing in the
market. The rest shows that our model represents the term structures
of many entities with one common factor (MCI) and one individual
factor (CQI) satisfactory. Figure 10 shows the path of theoretical yield
spread of each entity at several term to maturity.

4. Conclusion

We modeled the loss-adjusted hazard rates as a function of the Macro
Credit Indicators (MCIs) which describes the fluctuation of the whole
corporate bond market, and Credit Quality Indicators (CQIs) which
describe the credit reliability of individual issuer. We showed that the
prices of defaultable bonds are represented by the Yield Spread Term-
Quality Surface (YSTQS) in our model and derived the shape and
dynamics of YSTQS.

We examined our model with daily spread and credit rating data,
and estimated the histrical path of MCI and CQIs. The estimated CQI
tells us the credit reliability implied in the yield spread for the indi-
vidual issuer. On the other hand, MCI tells us the economic condition.
And we showed that the market requires some premiums for the risk
of MCI and CQIs.

We can draw the theoretical yield spread term structure of each
entities which match the observed yield spreads and natural to each
other in spite of there are not sufficient issue of bonds with individual
entities. Our model tells us the joint dynamics of the yield spread term
structure of whole market. This means that we can control the spread
risk of plural entities consistently.
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Table II. Estimation of parameters

κx 0.28590

MCI xt θx 64.218

θ̃x 30.094

σx 2.3467

κz 0.022477

CQI zi
t θz 0*

θ̃z -1.2714

ρs 0.46839

correlation ρm 0.35869

ρxz -0.034754

x0 100*

hazard function z0 0.0*

γ0 0.01*

φ(4.00) -8.3819

φ(2.00) -2.4673

φ(0.00) -1.5506

φ(−2.00) 1.5132

φ(−4.00) 1.5148

λy 0.94756 [bps]

observation λz 0.028445

δl 6.8266 [bps]

∆ 1/250 [year]*

(* means fixed parameters)
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Appendix

A. Proof of proposition 2

Likewise the case of default indicator, hence the N i
tLi is a submartin-

gale, there exists (FM
t )-predictable right continuous nonnegative mono-

tonically nondecreasing process Ai
t where Ai

0 = 0 and N i
tLi − Ai

t is a
(Q, (FM

t ))-martingale.

LEMMA 14. If the assumption 1 hold, cumulative loss-adjusted hazard
process Ai

t is absolutely continuous in t ∈ [0, T ].

Proof. N i
t (1 − Li) is a submartingale. From the uniqueness of the

Doob-Meyer’s decomposition, we find that Λ̃i
t−Ai

t is a (FM
t )-predictable,

right continuous nonnegative monotonically nondecreasing process, i.e.,
for any u ≤ t ≤ T ,

Λ̃i
t −Ai

t ≥ Λ̃i
u −Ai

u.

Recall that both of Λ̃i
t and Ai

t are nondecreasing, so the following
inequality should hold.

|Λ̃i
t − Λ̃i

u| ≥ |Ai
t −Ai

u|.

Because, Λ̃i
t is absolutely continuous, so is Ai

t.
Q.E.D.

Therefore Ai
t is represented by some (Q, (FM

t ))-adapted process γi
t

as follows.

Ai
t =

∫ t

0
ds(1 −N i

s−)γi
s, (25)

where (1 − N i
t−)γi

t ≥ 0. Moreover, hence Λ̃i
t − Ai

t is a monotonically

nondecreasing process, we find that (1 −N i
t−)(h̃i

t − γi
t) ≥ 0.

B. Proof of Theorem 3

Define M i
t,T as a (Q, (FM

t ))-martingale on t ∈ [0, T ] from terminal
prices of defaultable bonds as follows.

M i
t,T := EQ

[

(1 −N i
T )S−1

T +Ri
T,TS

−1
T∧τi

∣

∣

∣FM
t

]

. (26)

And the price of corporate bonds are represented as follows,

pi
t,T = (1 −N i

t−)M i
t,TSt. (27)
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LEMMA 15. For any i = 1, . . . , N , T ∈ [0, T̄ ], t ∈ [0, T ], the following
equations should hold.

Ri
t,T = N i

tM
i
t∧τi,TSt∧τi

, (28)

∆N i
t∆M

i
t,T = ∆N i

t

(

Ri
t,TS

−1
t −M i

t−,T

)

= ∆N i
tM

i
t−,TLi, (29)

pi
t,T = (1 −N i

t )M
i
t,TSt + (1 −N i

t−)Ri
t,T . (30)

Proof. Equations (28) and (29) are easily derived from the definition
of M i

t,T and Ri
t,T and that NtNu = Nt∧u, ∆N i

t = 1t=τi
∆N i

t .
(30) is derived directly from (28) and,

pi
t,T = (1 −N i

t−)M i
t,TSt = (1 −N i

t )M
i
t,TSt + ∆N i

tM
i
t,TSt.

Q.E.D.

LEMMA 16. For any i = 1, . . . , N , T ∈ [0, T̄ ], t ∈ [0, T ], define,

M̃ i
t,T := e−Ai

tM i
t∧τi−,T . (31)

Then, M̃ i
t,T is a (Q, (FM

t ))-martingale.

Proof. Applying Ito formula, we have,

M̃ i
t,T = (1 −N i

t )e
−Ai

tM i
t,T +N i

te
−Ai

τiM i
τi−,T

= −
∫ t

0
dAi

ue
−Ai

uM i
u−,T +

∫ t

0
(1 −N i

u−)e−Ai
udM i

u,T

−
∑

u≤t

e−Ai
u∆N i

u∆M i
u,T −

∑

u≤t

∆N i
u

(

e−Ai
uM i

u−,T − e−Ai
τiM i

τi−,T

)

=

∫ t

0
e−Ai

u

(

M i
u−,T (LidN

i
u − dAi

u) + (1 −N i
u−)dM i

u,T

)

.

where we use equation (29). The right hand side of the above equation
is a (Q, FM

t )-local martingale. Since M̃ i
t,T is bounded, it is a (Q, FM

t )-
martingale.

Q.E.D.

Now we try to prove theorem 3. From equation (30) and (31), the
condition (2) is equivalent to,

(1 −N i
t )X

i
t,T = (1 −N i

t )M̃
i
t,T . (32)
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First, we assume that equation (32) holds at t ∈ [0, T ]. Obviously,

condition of equation (4) holds. And M̂ i
t,T = Xi

t,T = M̃ i
t,T at t < τi.

From the definition, N i
tM̃

i
t,T = N i

tM̃
i
τi−,T and N i

tM̂
i
t,T = N i

tM̂
i
τi−,T ,

i.e., the both of M̃ i
t,T and M̂ i

t,T freeze after the default event. So we

find that M̂ i
t,T = M̂ i

τi−,T = M̃ i
τi−,T = M̃ i

t,T at t ≥ τi. So M̂ i
t,T is a

(Q, (FM
t ))-martingale.

Second, we assume that M̂ i
t,T is a (Q,FM

t )-martingale, and equa-
tions (4) holds. Define,

ηi
t,T := (1 −N i

t )e
Λ̃i

t(M̃ i
t,T − M̂ i

t,T ), t ∈ [0, T ].

Hence,

ηi
t,T =

∫ t

0
(1−N i

s−)eΛ̃
i
s

(

(dM̃ i
s,T−dM̂ i

s,T )−(M̃ i
s−,T−M̂ i

s−,T )(dN i
s−dΛ̃i

s)
)

,

we see that ηi
t,T is a (Q, (FM

t ))-local martingale. Since EQ[sups≤T |ηi
s,T |] <

∞, it is a (Q, (FM
t ))-martingale14. Therefore,

(1 −N i
t )(M̃

i
t,T − M̂ i

t,T ) = e−Λ̃i
tηi

t,T = e−Λ̃i
tEQ

[

ηi
T,T

∣

∣

∣FM
t

]

= 0.

This means that equation (32) holds.

Note that we defined three kinds of stochastic processes, M i
t,T , M̃ i

t,T

and Xi
t,T to express the defaultable bond prices. The typical properties

of them are summarized in table III.

Table III. property of M i
t,T , M̃ i

t,T and Xi
t,T

at default time after the default time

M i
t,T jump freeze

M̃ i
t,T no jump freeze

Xi
t,T no jump free
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