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Abstract. We discussed utility-based pricing of defaultable bonds where their
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1. Introduction

The risk related to default events is called Credit risk. Credit risk is
not simple as it is a composition of risks such as default-timing risk,
recovery risk, and spread risk. In this article, we are concerned with
the structure of the credit risks and their premiums, especially in the
context of expected-utility maximization.

Much has been written about credit risk. For example, Duffie and
Singleton (2003) and Schönbucher (2003) are good texts for researchers
and practitioners. Bielecki and Rutukowski (2001) described the math-
ematical details of credit risk models. Schönbucher (2000) and Wei
(2006) survey recent work.

Let us start our discussion from the corporate bond model proposed
by Merton (1974). It is the origin of the structural form approach in
which bonds are the senior claims to firm values. In the Merton model,
default occurs only at the maturity of the bond and the firm value
is a geometric Brownian motion. Black and Cox (1976) developed the

† The views expressed are solely those of the author and do not necessarily reflect
those of Mitsubishi UFJ Trust Investment Technology Institute Co., Ltd.
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model so that the default time is the first hitting time of the firm value
to its liability. In those models, the default time is predictable and the
bond is a redundant security.

Many developments of the structural form approach derive an un-
predictable default time with an unobservable default trigger1, a noisy
observation of the firm value2, or a jump of the firm value3. These
models have finite default intensities and so the default-timing risk is
isolated from the stock price change. Therefore, the defaultable claims
are no longer redundant.

These incomplete structural models are essential not distinct from
the reduced form approach in which default intensity is directly con-
sidered. The models that are described by stochastic default intensity
are often called types of the doubly-stochastic model4. An alternative
way of modeling default intensity-dynamics is to relate it to credit-
rating migration5. Both these models, which have different concepts,
are uniformly described as conditional Markov chain models 6. We
describe defaults using a doubly-stochastic model in this article.

Another inconspicuous but important credit risk is in recovery (or
Loss-Given-Default). If a defaultable claim holder cannot predict the
recovery value of what they hold, they are exposed to the recovery
risk. Although recovery risk is paid less attention the default-timing
risk, it sometimes plays crucial role at the time of settlement of claims
written on defaultable bonds or their portfolio, as with collateralized
debt obligations.7

The simplest model of recovery is the zero-recovery model. It can
also deal with bonds that recover constant value at their maturity
and hence are mimicked by zero-recovery and default-free bonds. The
models that express a recovery value by a predictable process may be
more acceptable for practitioners. If the recovery value of a bond is in
proportion to its pre-default price, it is called fractional-recovery.

Recent studies modeled unpredictable recovery values by normal
distributions8, by log-normal distributions9, or by logit transformation

1 Giesecke and Goldberg (2005)
2 Duffie and Lando (2001), Nakagawa (2000)
3 Dao and Jeanblanc (2006), Courtois (2006)
4 Duffie and Singleton (1999)
5 Jarrow, Lando, and Turnbull (1997), Kijima and Komoribayashi (1998)
6 Bielecki and Rutkowski (2003)
7 If the expected losses are the same, low-Default-Probability and high-LGD

collateral is more harmful for the senior tranche than high-DP and low-LGD ones.
Hence the former is more damaging to subordinated tranches.

8 Frye (2000)
9 Pykhtin (2003)
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of normal distributions10. Dllmann and Trapp (2004) compared those
models empirically. Schuermann (2004) studied the historical recovery
rates of individual defaults based on the market price of the defaulted
bonds and showed that their distribution changes on a macroeconomic
state.11 In this article, we model recovery values using truncated normal
distributions with dependence on a macroeconomic state.

Default-timing risk and recovery risk are direct risks for defaultable
claim holders. There is also another kind of credit risk called spread
risk. Spread risk is the risk of potential loss that arises from increases
of information. The potential loss can be measured by present values,
and the present values of defaultable bonds are usually represented by
yield spreads from default free bonds. Therefore, we call it spread risk.

If there exist an infinite number of obligors, obligees are able to
diversify away their credit risk and risk premiums should theoretically
vanish because of the asymptotic arbitrage free principle.12 But several
empirical researches suggest that there are some credit risk premiums
in real markets.

In respect to the default-timing risk premium, Driessen (2005) stated
that the default intensity on the risk neutral measure is about twice that
estimated compared to the physical measure in the American corporate
bond market; he also included tax and liquidity adjustments. Berndt
et al. (2005) reported that they found a ratio of 2.032 as the median
estimate in the American default swap market.

On the other hand, Duffee (1999) concluded that the spread risk
is positively priced in the corporate bond market. Farnsworth and Li
(2003) did not estimate default intensity processes on the physical mea-
sure, though they found that the unconditional mean of the common
part on the risk neutral measure is much higher than its observed value.
Driessen (2005) also found that the common part of spread risk is
positively priced, but that the firm-specific part is not. The empirical
result from Feldhütter and Lando (2005), who constructed a credit
rating migration model with latent factors, is that the slope factor of
the spread risk is priced but the level factor is not.

The theme of this article is to investigate credit risk premiums in an
incomplete market using utility-based pricing, which is the most used
method of pricing in finance and economics. Bielecki and Jeanblanc
(2004) discussed the utility-indifference price of defaultable claims by
a backward stochastic differential equation. For other applications of
utility-based pricing for credit risk, see also Collin-Dufresne and Hugonnier
(2001) and Sircar and Zariphopoulou (2006).

10 Schönbucher (2003)
11 Hu and Perraudin (2002) and Altman et al. (2005) also pointed out this fact.
12 Jarrow, Lando, and Yu (2005)



4 Tomoaki Shouda

We consider a concrete example of the bond holders’ investment
problem in which the bond itself is not tradable. We derive a partial
integro-differential equation that the utility-based defaultable bond
prices should satisfy, and show its behavior by numerical calculations.
Changing parameters, we can choose components of theoretical bond
yield term structure, such that expected loss and several risk premiums.
Our research may help us to decipher the market evidences of credit
risk premiums shown by empirical studies.

The rest of this article is organized as follows. In section 2, we define
a doubly-stochastic model of defaultable bonds with recovery risk. In
section 3, we consider an optimal investment problem for defaultable
bond holders. In section 4, we discuss utility-based pricing of default-
able bonds, and derive a partial integro-differential equation for it. We
solve it numerically in section 5, and show the results of yield-spread
decomposition. Section 6 concludes this article.

2. A Simple Model of Defaultable Bonds

In this section, we construct a simple model of defaultable bonds that
are recovered unpredictably at their default time. Consider a complete
probability space (Ω,F , P ) on which a d-dimensional standard Brow-
nian motion w· : Ω × [0, T ] → Rd up to a fixed time horizon T , and a
couple of uniform random variables (U, V ) : Ω → [0, 1]2 are defined.13

We assume that w·, U , and V are mutually independent. Define a
filtration (Ft)t∈[0,T ] as follows.14

Ft := σ{ws; s ≤ t}, F = FT ∨ σ{U,V }.

DEFINITION 1. Consider that there exists a stochastic vector process
X : Ω × [0, T ] → X ⊆ RD that is a strong solution of the following
stochastic differential equation15.

dXt = µ̂(Xt)dt + σ̂(Xt)dwt. (1)

We regard (Xt) as a state vector.

DEFINITION 2. Suppose a function ĥ : C(X → R++) such that

EP [exp(−
∫ T
0 dsĥ(Xs))] > 0 for any X0 ∈ X . Define nondecreasing

13 See Protter (2003) for mathematical details.
14 We assume that the all filtrations in this article are complete and right

continuous.
15 All hatted functions are deterministic (i.e. do not depend on ω ∈ Ω) in this

article. Subscriptions with them denote partial derivatives, ∂xf̂(x, y, z) by f̂x(x, y, z)
for example.
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continuous processes Γ,Λ : Ω × [0, T ] → R+, an indicator function
H : Ω × [0, T ] → {0, 1}, and a stopping time τ : Ω → [0, T ] ∨ {∞} as
follows.

Γt :=

∫ t

0
ĥ(Xs)ds, (2)

Ht := 1e−Γt≤U , (3)

τ := inf
{

{t ∈ [0, T ];Ht = 1} ∨ {∞}
}

, (4)

Λt := Γt∧τ . (5)

PROPOSITION 3. Define a stochastic process function M : Ω×[0, T ]×
B([0, 1]) → R and a filtration (Gt)t∈[0,T ], which represents the informa-

tion open to the market, as follows;16

M(t, B) := 1V ∈BHt − µ(B)Λt, (6)

Gt := σ{ws,M(s, ·); s ≤ t}, (7)

where µ(·) and B(·) denote the Lesbegue measure and the Borel field,
respectively, so that M(t, B) is a (P, (Gt))-martingale for any B.

Proof. For the first term of equation (6), the expectation value is,

E[1V ∈BHT |Gt] = 1V ∈BP (e−Γt ≤ U |Gt) + µ(B)P (e−ΓT ≤ U < e−Γt |Gt)

= 1V ∈BHt + (1 − Ht)µ(B)E[1 − eΓt−ΓT |Gt].

On the other hand, for the second term, that is,

E[ΛT |Gt] = Λt + (1 − Ht)E[E[ΛT − Λt|U < e−Γt ]|Gt]

= Λt + (1 − Ht)E[1 − eΓt−ΓT |Gt].

Therefore M(t, B) is a (P, (Gt))-martingale.
Q.E.D.

PROPOSITION 4. τ is a (Gt)-totally inaccessible stopping time whose

intensity at time t is given by 1τ≥tĥ(Xt).

Proof. For any (Gt)-predictable stopping time S, there exists a (Gt)-
stopping time sequence Sn < S such that limn→∞ Sn = S. Because Sn

is (Gt)-measurable,

P (Sn = s|Γs > U ≥ Γv, {Γt}t≥0) = P (Sn = s|Γs > U, {Γt}t≥0),
16 Note that F ⊆ GT is not guaranteed.
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for any 0 ≤ s < v. The distribution of τ conditioned by Sn and {Γt}t≥0

becomes,

P (s < τ ≤ v|Sn = s, {Γt}t≥0)

= P (s < τ |Sn = s, {Γt}t≥0)P (τ ≤ v|s < τ, {Γt}t≥0)

= P (s < τ |Sn = s, {Γt}t≥0)(1 − eΓs−Γv).

Therefore the conditional probability density of τ at v > Sn is finite as
follows.

lim
δ↓0

δ−1P (v < τ ≤ v + δ|Sn = s)

= lim
δ↓0

δ−1(P (s < τ ≤ v + δ|Sn = s) − P (s < τ ≤ v|Sn = s))

= lim
δ↓0

δ−1P (s < τ |Sn = s)E[eΓs−Γv(1 − e−
∫ δ

0
duĥ(Xv+u))]

= P (s < τ |Sn = s)E[eΓs−Γv ĥ(Xv)] < ∞.

Recall that S > Sn, we get P (τ = S < ∞) = 0.
Q.E.D.

Consider that an obligor whose default time is given by τ has issued
a bond that yields a unit cash flow per share at time T if the obligor
has not defaulted, i.e. if τ > T . If the obligor has defaulted before time
T , its recovery value is to be paid for the holder per their share at the
default time τ ,

We define the recovery as the fractional recovery of market value
at default as follows. We can assume that the bond price is a (Gt)-
adapted process denoted by pt at time t, and pt− := lims↑t ps is to be
(Gt)-predictable. Suppose a function ϕ̂ : [0, 1] × X → [0, 1] which is
non-decreasing with respect to its first argument. We put the recovery
value ϕ̂(V,Xτ )pτ− with the random variable V . Note that the recovery
value is (Gτ )-measurable.

3. An Optimal Investment Problem for

Defaultable Bond Holders

In this section, we consider an optimal investment problem for default-
able bond holders, and derive a partial integro-differential equation that
their expected utility functions solve.

Consider an investor who holds the defaultable bonds of F . We
prohibit trading the defaultable bond. In other words, the investor holds
the bond of constant F until its default event or maturity. Assume
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that the investor’s terminal utility at time T is expressed by a function
Û : C2(R+ → R+) whose derivatives satisfy the inequities of Û ′(·) > 0

and Û ′′(·) < 0.
We consider a simple market in which a set of risky assets are traded.

Their prices are to be described by an n-dimensional vector process
(St)t∈[0,T ]. Assume that they are geometric Brownian motions as;

dSi
t = Si

t(µidt + σidwt), Si
0 = 1, (8)

where Si
t denotes the ith component of the vector St, µ denotes an n-

dimensional constant vector, and σ denotes an n × d constant matrix.
We put d ≥ n and σiσ

T
j = 1i=j .We assume that a bank account is

also traded in the market, and its price is always 1. Thus the risk free
interest rate is always 0.

Suppose the set of all admissible strategies is Π. Any π ∈ Π is an
n-dimensional vector valued (Gt)-predictable processes that denotes a

fraction of the portfolio invested in risky assets, and satisfies E[
∫ T
0 π2

t dt] <
∞. Hence the cashflow yielded by the bond up to time t is Htϕ̂(V,Xτ∧t)p(τ∧t)−,
the self-financing wealth process excluding the present value of the bond
with any strategy π ∈ Π solves the following stochastic differential
equation with jump;

W π
t = W0 +

∫ t

0

[

πs−W π
s−(µds + σdws) + Fϕ̂(V,Xs)ps−dHs

]

. (9)

If the issuer has not defaulted up to time T , the bond is cleared by
1. Therefore the utility maximization problem of the bond holder is
expressed as follows.

π∗ = arg sup
π∈Π

E[Û (W π
T + F (1 − HT ))]. (10)

We assume that the bond price is given by some deterministic function
ζ̂ ∈ C2,2,1(R+ × X × [0, T ] → [0, 1]) as,

pt = ζ̂(W π
t ,Xt, t). (11)

Consider a stochastic process Y π : Ω × [0, T ] → R for each π ∈ Π
which solves the following backward stochastic differential equation17;

Y π
t = −Û(W π

T + F (1 − HT )) −

∫ T

t
ξ̂(Hs−,W π

s−, πs−,Xs, s)ds

17 For the general information about BSDEs in finance, see Duffie and Epstein
(1992), Cvitanić and Karatzas (1993), Ma, Protter and Yong (1994), Duffie, Ma and
Yong (1994), and El Karoui, Peng and Quenez (1997). Rong (1997) and Becherer
(2006) studied about BSDE’s with jumps. Bielecki and Jeanblanc (2004) applied
BSDE to derive utility-indifference price of defaultable claims.
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−

∫ T

t
ẑ(Hs−,W π

s−, πs−,Xs, s)dws

−

∫ T

t

∫

[0,1]
x̂(v;W π

s−,Xs, s)M(ds, dv). (12)

To well define Y π
t , we assume the following.

ASSUMPTION 5. All of
∫ T
0 ds|ξ̂(Hs−,W π

s−, πs−,Xs, s)|,
∫ T
0 ds|ẑ(Hs−,W π

s−, πs−,Xs, s)|
2, and

∫ T
0 ds

∫

B dv|x̂(v;W π
s−,Xs−, s)| are

finite almost surely at any π ∈ Π, X0 ∈ X , and B ∈ B([0, 1]).

Consider functions Ŷ0 ∈ C2,2,1(R+ × X × [0, T ] → R) and Ŷ1 ∈
C2,1(R+ × [0, T ] → R) which satisfy terminal conditions,

Ŷ0(W,X,T ) = Û(W + F ), Ŷ1(W,T ) = Û(W ),

and whose derivatives satisfy the following inequities at any W ∈ R+,
X ∈ X , and t ∈ [0, T ];

Ŷ0(W,X, t) < 0, Ŷ0,W (W,X, t) < 0, Ŷ0,WW (W,X, t) > 0,

Ŷ1(W, t) < 0, Ŷ1,W (W, t) < 0, Ŷ1,WW (W, t) > 0.

PROPOSITION 6. The BSDE (12) has a unique solution that is ex-

pressed by Ŷ0(· · ·) and Ŷ1(· · ·) as follows,

Y π
t = Ŷ (Ht,W

π
t ,Xt, t) = (1 − Ht)Ŷ0(W

π
t ,Xt, t) + HtŶ1(W

π
t , t), (13)

if we put ξ̂(· · ·), ẑ(· · ·), and x̂(· · ·) as follows, respectively, and they
satisfy assumption 5.

ξ̂(H,W, π̃,X, t) := Wπ̃µŶW (H,W,X, t) +
1

2
W 2π̃2ŶWW (H,W,X, t)

+µ̂(X)ŶX (H,W,X, t) +
σ̂2(X)

2
ŶXX(H,W,X, t)

+Wπ̃σσ̂T (X)ŶWX(H,W,X, t) + Ŷt(H,W,X, t)

+(1 − H)ĥ(X)

∫

[0,1]
dvx̂(v;W,X, t), (14)

ẑ(H,W, π̃,X, t) := Wπ̃σŶW (H,W,X, t) + ŶX(H,W,X, t)σ̂(X), (15)

x̂(v;W,X, t) := Ŷ1(W + Fϕ̂(v,X)ζ̂(W,X, t), t) − Ŷ0(W,X, t).(16)

Proof. Applying the Ito formula, we can see that Ŷ (· · ·) solves equa-
tion (12). It also satisfies the terminal condition. Hence, the coefficients
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do not contain Y π
t itself and the uniqueness is trivial.

Q.E.D.

Note that if the conclusion of proposition 6 holds, Y π
t depends on

the strategy π only through W π
t . Equation (13) means that Ŷ0(· · ·)

and Ŷ1(· · ·) represent the value of Y π
t before and after the default

respectively.
Define a function π̂ : {0, 1} × R+ × X × [0, T ] → Rn as follows;

π̂(H,W,X, t) := −
µ

W

ŶW (H,W,X, t)

ŶWW (H,W,X, t)
−

σσ̂T (X)

W

ŶWX(H,W,X, t)

ŶWW (H,W,X, t)
.

(17)

THEOREM 7. Assume that Ŷ (· · ·) solves the following partial integro-
differential equation;

−
1

2

(µŶW (H,W,X, t) + σσ̂T (X)ŶWX(H,W,X, t))2

ŶWW (H,W,X, t)

+µ̂(X)ŶX (H,W,X, t) +
σ̂2(X)

2
ŶXX(H,W,X, t) + Ŷt(H,W,X, t)

+(1 − H)ĥ(X)

∫

[0,1]
dvx̂(v;W,X, t) = 0. (18)

Moreover, assume that it satisfies the assumption 5 via equations (14),
(15), and (16). If a strategy defined by a dynamic programming such
that π∗∗

t := π̂(Ht,W
π∗∗

t ,Xt, t) is admissible, then Y π
t becomes a (P, (Gt))-

submartingale for any π ∈ Π, and only π∗∗ makes Y π∗∗

t a (P, (Gt))-
martingale.

Proof. Equation (18) make Y π∗∗

t a (P, (Gt))-local martingale hence,

ξ̂(H,W, π̃,X, t) =
1

2
W 2ŶWW (H,W,X, t)

(

π̃ − π̂(H,W,X, t)
)2

.

Moreover, assumption 5 guarantees that Y π∗∗

t becomes a (P, (Gt))-

martingale. Recall that we assumed ŶWW (· · ·) > 0, thus the submartin-
gale property of Y π

t is trivial.
Q.E.D.

We give the following corollary without proof.

COROLLARY 8. If equation (12) has a set of solutions such that Y π
t is

a (P, (Gt))-submartingale for any π ∈ Π, and is a (P, (Gt))-martingale
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for some unique strategy. Then, the optimal strategy and the expected
utility of the investor are given as follows.

π∗ = arg sup
π∈Π

E[Û (W π
T + F (1 − HT ))] = arg inf

π∈Π
E[Y π

T ], (19)

sup
π∈Π

E[Û (W π
T + F (1 − HT ))|Gt] = − inf

π∈Π
E[Y π

T |Gt] = −Y π∗

t . (20)

Therefore, if we have a solution of equation (18) that gives an admis-
sible π∗∗, then −Y π∗∗

t and π∗∗ are the expected utility and the optimal
strategy, respectively.

Here we note that the first term of equation (17) represents the
growth optimal portfolio, and the second term represents the hedging
portfolio for the increase of future default risk (i.e., the spread risk).

4. The Price of Defaultable Bonds

4.1. Utility-Based Price

We do not allow any trading of the defaultable bond as there is no
market price in the usual sense. However we can consider utility-based
pricing from the expected utility.

At the first step, we consider utility-indifference pricing. The utility-
indifference pricing of defaultable bond is defined to keep bond holders’
expected utility at latent callings (or purchases) of the bond. Therefore
the utility-indifference price is denoted by a function of their wealth,
state processes, and time as q̂(W,X, t), which satisfies,

Ŷ1(W + F q̂(W,X, t), t) = Ŷ0(W,X, t), (21)

at t < τ . Hence we assumed that Ŷ1(W, t) is a monotonically decreasing
function with respect to W and there exists an inverse function, which
can be denoted by Î(Y, t). q̂(W,X, t) is represented by Î(Y, t) explicitly
as follows.

q̂(W,X, t) :=
1

F

(

Î(Ŷ0(W,X, t), t) − W
)

. (22)

Therefore, q̂(W,X, t) ∈ C2,2,1.

Next, we consider marginal utility-based pricing of the defaultable
bond. The basic idea of marginal utility-based pricing is well known in
the fields of economics and finance. It is defined as to suppress trading
for the investors. If for any agent in the market, the market price is
their marginal utility-based price; as well, it is also an equilibrium-
price, i.e., the market is in an equilibrium with it. Besides if we can
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suppose a representative investor, their marginal utility-based price is
an equilibrium-price. The modern style of the definition of the marginal
utility-based pricing in incomplete markets is given by Davis (1996).

In the rest of this subsection, we describe the dependence to holding
amount of the bond F explicitly as Ŷ0(W,X, t;F ) or q̂(W,X, t;F ) and
so on.

DEFINITION 9. If a function p̂(W,X, t;F ) satisfies the following in-
equality at any F ′ ∈ R+ which satisfies (F ′ − F )p̂(W,X, t;F ) ≤ W , it
represents a marginal utility-based price of the defaultable bond;

Ŷ0(W − (F ′ − F )p̂(W,X, t;F ),X, t;F ′) ≥ Ŷ0(W,X, t;F ). (23)

Equation (23) means that if a bond holder sells (or buys) bonds with
a marginal utility-based price, their expected utility does not increase.
Thus if they can trade the bond in the market at their marginal utility-
based price, no trading is rational for them.

Hugonnier, Kramkov and Schachermayer (2005) argued the unique-
ness of marginal utility-based prices based on the existence of equiv-
alent martingale measures. However, as we assume it the following
proposition relates the marginal utility-based bond price to the utility-
indifference bond price.

PROPOSITION 10. If there exists a marginal utility-based bond price
p̂(W,X, t;F ) uniquely, it is related to the utility-indifference bond price
q̂(W,X, t;F ) as follows.

p̂(W,X, t;F ) =
q̂(W,X, t;F ) + F q̂F (W,X, t;F )

1 + F q̂W (W,X, t;F )
. (24)

Proof. Put W ′ := W − (F ′ − F )p̂(W,X, t;F ). From equation (21)

and Ŷ0,W (· · ·) < 0, we get the following inequities,

p̂(W,X, t;F )
≥
≤

F ′q̂(W ′,X, t;F ′) − F q̂(W,X, t;F )

F ′ − F
, if F ′ >

<
F.

Therefore if the marginal utility-based bond price is uniquely well
defined, it satisfies,

p̂(W,X, t;F ) =
∂

∂F ′

(

F ′q̂(W − (F ′ − F )p̂(W,X, t;F ),X, t;F ′)
)

|F ′=F

= q̂(W,X, t;F ) + F q̂F (W,X, t;F ) − F q̂W (W,X, t;F )p̂(W,X, t;F ).

Q.E.D.
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4.2. The Case of Exponential Utility

To give a concrete calculable example, we consider that the investor’s
utility is expressed by an exponential form as Û(W ) = 1− e−aW where
a > 0 is their risk aversion parameter. Moreover, assume that the bond
price ζ̂(· · ·) does not depend on their wealth. In this case, we can put,

Ŷ0(W,X, t) = e−a(W+F )f̂(t)ĝ(X, t) − 1, Ŷ1(W, t) = e−aW f̂(t) − 1,

, respectively, where the terminal condition f̂(T ) = ĝ(X,T ) = 1 holds
at any X ∈ X . Equation (18) leads,

−
µ2

2
f̂(t) + f̂t(t) = 0, f̂(t) = e−

µ2

2
(T−t),

and,

−
(σσ̂T (X))2

2

ĝ2
X(X, t)

ĝ(X, t)
+

[

µ̂(X) − µ · σσ̂T (X)
]

ĝX(X, t)

+
σ̂2(X)

2
ĝXX(X, t) + ĝt(X, t) + ĥ(X)

(

eaF (1−r̂(X,t)ζ̂(X,t)) − ĝ(X, t)
)

= 0,

(25)

where we put r̂ : X × R+ → [0, 1] as follows to denote the certainty
equivalent of the stochastic recovery ratio;

r̂(X, t) := −
1

aF ζ̂(X, t)
ln

∫ 1

0
dve−aF ζ̂(X,t)ϕ̂(v,X). (26)

Note that the all assumptions about inequalities of Ŷ (· · ·) and their
derivatives with respect to W hold if ĝ(· · ·) > 0.

From equation (22), the utility-indifference price of the defaultable
bond does not depend on wealth W , it is given by,

q̂(X, t) = 1 −
ln ĝ(X, t)

aF
, (27)

or inversely,
ĝ(X, t) = eaF (1−q̂(X,t)). (28)

Substituting it to equation (25), we get a partial integro-differential
equation in which the utility-indifference bond price must satisfy;

aF

2

(

σ̂2(X) − (σσ̂T (X))2
)

q̂2
X(X, t) −

[

µ̂(X) − µ · σσ̂T (X)
]

q̂X(X, t)

−
σ̂2(X)

2
q̂XX(X, t) − q̂t(X, t) +

ĥ(X)

aF

(

eaF ζ̂(X,t)(1−r̂(X,t)) − 1
)

= 0.

(29)
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Hence p̂(X, t;F ) = ∂F (F q̂(X, t;F )), differentiating the equation (29)
by F , we get the following partial integro-differential equation for the
marginal utility-based bond price;

aF
(

σ̂2(X) − (σσ̂T (X))2
)

q̂X(X, t)p̂X(X, t)

−
[

µ̂(X) − µ · σσ̂T (X)
]

p̂X(X, t) −
σ̂2(X)

2
p̂XX(X, t) − p̂t(X, t)

+ĥ(X)eaF ζ̂(X,t)(1−r̂(X,t))ζ̂(X, t)(1 − r̂(X, t)) = 0. (30)

Using the marginal utility-based bond price as the bond price, ζ̂(X, t) :=
p̂(X, t), Equations (29) and (30) compose simultaneous partial integro-
differential equations.

5. A Numerical Example

5.1. The Default Intensity and Recovery Model

We solve equations (29) and (30) numerically, and calculate the marginal
utility-based defaultable bond price. Consider that the state vector Xt

is a scalar valued Ornstein-Uhlenbeck process, such that,

dXt = κX(θX − ht)dt + σXdwt, κX > 0, (31)

and the default intensity function is given as follows.18

ĥ(Xt) = exp(Xt)/10000. (32)

We put ρ := σσT
X/|σX |, representing the hedgeability of the spread

risk by the risky assets. If |ρ| = 1, the spread risk is fully hedgeable.
Contrarily, if |ρ| = 0, there is no way to hedge the spread risk. In the
case of 0 < |ρ| < 1, the spread risk is partially hedgeable.

The bond holder is exposed to the hedgeable part of the spread
risk via the risky asset portfolio, as well as the defaultable bond itself.
In this article, we modeled the asset price processes of the external
market by simple lognormal processes (8). However, the asset class most
correlating with the defaultable bonds is the defaultable bonds them-
selves. So that the hedgeable part roughly corresponds to the common
(systematic) part of the spread risk that represents the macroeconomic
condition. On the other hand, the unhedgeable part represents the
firm-specific part of the spread risk.

18 This is called the Black-Karasinski model. Black and Karasinski (1991) applied
their model to the risk free interest rate.
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We put the parameters as σX = 1.232, κX = 0.427, θX = 3.219,
and ρ = −0.482 which are estimated by Berndt et al. (2005) for the
American broadcast-entertainment firms.19 For the external market,
we put n = 1 and µ = 0.2.

Next, let us specify the distribution of recovery values. We assume
that ϕ̂(v, x) has a inverse function with respect to v, which is denoted
by ρ̂(v, x). We put ρ̂(· · ·) as the truncated normal distribution function
such as,

∫ v

0
dyρ̂(y, x) = N0,1(v; b̂(x), δ̂(x))

=
N(v ∧ 1; b̂(x), δ̂(x)) − N(0; b̂(x), δ̂(x))

N(1; b̂(x), δ̂(x)) − N(0; b̂(x), δ̂(x))
, (33)

where b̂(x) and δ̂(x) > 0 are some deterministic functions, and N(v; b, δ)
denotes the cumulative normal distribution function with mean b and
standard deviation δ.

From empirical studies about recovery20, there exists a negative
correlation between the default intensity and the recovery ratio. Table
I shows the mean, standard deviation, and percentile points of the
historical recovery ratio for NBER recessions and expansions.21 We
estimated parameters for the model to match means and standard de-
viations of the recovery ratio from historical values. Figure 1 illustrates
the distribution of the recovery ratio mimicked by truncated normal
distributions.

We regard that the market is in expansion if Xt ≤ θX , and in
recession if Xt ≥ θX + σX√

2κx
, where σX√

2κx
is the unconditional standard

deviation of Xt. If θX < Xt < θX + σX√
2κx

, we simply linearly interpolate

the certainty equivalent of the recovery ratio for both states. We use
the above asymmetrical boundaries because the observations in periods
of recession are only 332 among the total of 2035 observations.

Figure 2 shows the yield spread of the defaultable bond to the
default intensity and the duration, ŷ(ĥ(x), t) := − 1

T−t
ln p̂(x, T − t).

All graphs illustrate that wide spreads are required for higher default
intensities. The spread becomes tight as the duration becomes long at
higher default intensities. Contrarily, it becomes wide at lower default
intensities. This phenomenon is explained by the mean reversion prop-

19 They estimated default intensities by Moody’s KMV EDFs. In their research,
they estimated the specific θX for each firm. We use the median of the estimation
for 19 firms in the sector.

20 Hu and Perraudin (2002), Schuermann (2004), Altman et al. (2005).
21 This definitely denotes the distribution of the ratio between defaulted bond

prices and their face values.
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Table I. Recoveries across the business cycle

Mean Std. Dev. Historical Truncated normal

25% 50% 75% 25% 50% 75%

Recessions 32.07 26.86 10.00 25.00 48.50 11.31 26.42 49.41

Expansions 41.39 26.98 19.50 36.00 62.50 18.35 38.12 62.09

All 39.91 27.17 18.00 34.50 61.37 16.56 35.85 60.53

(Moody’s, 1970-2003) from Schuermann (2004)
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Figure 1. Recovery distribution approximated by truncated normal distribution

erty of the default intensity. Comparing the graphs, we find that the
spread become wider with an increase of the bearing risk F and the
risk aversion parameter a.

5.2. Spread Decomposition

The decomposition of yield spreads to risk premiums and expected loss
rates suggest the risk-return structure of the defaultable bonds.

The yields of defaultable bonds contain risk free interest rates, ex-
pected loss rates, and risk premiums, which are defined the yields not
involving risk free interest and expected loss rates. In our model, risk
free interest rates are assumed to be zero so that the yields and the
yield spreads are not distinguished.

Hence we have considered three kinds of credit risk. We can also
categorize risk premiums for each risk. On the other hand, we can
categorize risk premiums along another axis based on the relationships
to the external market. The hedgeable part of the spread risk is priced
exogenously by µ, which is the risk premium of the risky assets. The
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Figure 2. Yield spread of the marginal utility-based bond price [%]

unhedgeable spread risk and the other risks, the default-timing risk and
recovery risk, are isolated from the external market; therefore, their
prices are determined endogenously depending on the bond holder’s
utility.

Changing the parameters as in table II, we can choose the contents
of the yield. Cells of enable use the value of table III. It is better to
consider in inverse order as follows to understand this trick.

− At step 5, the yield contains all the components.

− At step 4, we change µ to zero, then the exogenous spread risk
premium has vanished.

− We set ρ = 1 at step 3, then the unhedgeable part of the spread
risk has vanished.

− At step 2, we replace the recovery value by its expectation. Thus
the recovery risk premium has been removed from the yield.

− Finally, we change the bond holding amount F to zero at step
1, then all-endogenous risk premiums have vanished. Hence, the
exogenous risk premium µ has already been removed and the yield
is equivalent to the expected loss rate.
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Table II. Contents of yield and corresponding parameters

step contents of yield F recovery ρ µ

1 expected loss rate 0 average 1 0

2 + default timing risk premium enable average 1 0

3 + recovery risk premium enable enable 1 0

4 + endogenous spread risk premium enable enable empirical 0

5 + exogenous spread risk premium enable enable empirical enable

Table III. Parameters of each figure

position aF recovery µ

left-top 0.5 expansion/recession 0.2

right-top 1.0 expansion/recession 0.2

left-bottom 0.5 expansion/recession 0.5

right-bottom 0.5 all 0.2

We show the numerical results of yield-spread decomposition in fig-
ures 3 and 4, which are in expansion (Xt = θX − σX√

2κX
) and in recession

(Xt = θX + σX√
2κX

), respectively. Each figure contains four graphs based

on different parameters as shown at table III.
We regard the left-top (LT) as the base scenario. The right-top (RT)

is the scenario where the investor is more risk averse (i.e., a is greater)
or the amount of the bond F is greater. The left-bottom (LB) describes
the scenario where there exists a higher exogenous spread risk premium.
At the right-bottom (RB), we ignore the default intensity dependence
of recovery distribution, so that those parameters for all in table I are
used in all the range of Xt.

Figures 5 and 6 show the amounts of risk premiums relative to the
expected loss rate. We also draw the conditional recovery ratio22.

The terminal yield spread is usually regarded as the default intensity
on the risk neutral measure. Berndt et al. (2005) estimated the ratio
of the default intensity between physical and risk neutral measures as
1.497 (median) and 2.037 (mean). Each setting aF = 0.5 and aF = 1.0
roughly reproduced their estimation, respectively (figures 5,6 LT,RT).
We also ascertained the following evidence;

22 They are calculated by 1−(ln pb
t)/(ln pa

t ) where each pa
t and pb

t denotes the bond
price at step 1 with them having recovery (a) and zero recovery (b) respectively.
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Figure 3. Decomposition of a yield spread in expansion; the stack of exogenous
spread risk premium, endogenous spread risk premium, recovery risk premium,
default-timing risk premium, and expected loss rate

0 1 2 3 4 5
0

50

100

150

200

duration

sp
re

ad
 [b

ps
]

0 1 2 3 4 5
0

50

100

150

200

duration

sp
re

ad
 [b

ps
]

0 1 2 3 4 5
0

50

100

150

200

duration

sp
re

ad
 [b

ps
]

0 1 2 3 4 5
0

50

100

150

200

duration

sp
re

ad
 [b

ps
]

All components

Expected loss rate

Figure 4. Decomposition of yield spread in recession (see fig. 3)
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Figure 5. The value of risk premiums relative to the expected loss rate, and the
conditional recovery rate in expansion (exogenous spread risk premium, endogenous
spread risk premium, recovery risk premium, default-timing risk premium)
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Figure 6. The value of risk premiums relative to the expected loss rate, and the
conditional recovery rate in recession (see fig. 5)
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1. The risk premium at a zero-duration terminal mainly consists of
the default-timing risk premium.

2. The main factor of the yield spread term structure that increases
is the exogenous spread risk premium.

3. The recovery and endogenous spread risk premiums are relatively
small. However, they rise to become important with aF (figures 5,6
RT).

4. To reproduce an increasing term structure in a recession, a rela-
tively high exogenous spread risk premium (µ ≥ 0.5) is required
(figure 4 LB).

5. Correlation between the default intensity and the recovery distri-
bution slightly reduces the conditional recovery value (figures 5,6
RB).

6. Conclusion

In this article, we have discussed utility-based pricing of defaultable
bonds that was derived from an optimal investment problem of bond
holders. We have then investigated the components of credit risk and
their theoretical premiums.

Credit risk can be decomposed into default-timing risk, recovery
risk, and spread risk. We have modeled these with two uniform random
variables and Brownian motions. Each risk can be further decomposed
into common and firm-specific parts. We have modeled the common
part of spread risk as the hedgeable part covered by risky assets in the
market. Therefore, it is priced exogenously via the processes involving
risky assets. The other risks are priced endogenously by utility-based
pricing.

We have derived a simultaneous partial integro-differential equation
that gives a theoretical bond price, and solved it numerically with the
empirically estimated parameters. Controlling the parameters, we have
extracted several risk premiums from the bond yield.

Our results support the empirical findings; that the firm-specific
spread risk premium is ignorable and suggest the existence of a high
common spread risk premium.
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